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cell 

The characteristics of induced flow in a cylindrical magnetoelectrolytic cell under the influence of uni- 
form and non-uniform magnetic fields are analysed. Experimental surface velocity values are predicted 
with reasonable accuracy by magnetohydrodynamic models incorporating open-channel flow concepts. 
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parameters in Equation 7 [Gak equation] 
magnetic flux density vector; Br, Bz its 
radial and axial components; Bo its mag- 
nitude,/~ its average magnitude 
auxiliary function in the annular Hankel 
transform technique (Equation 6) 
unit vectors in the cylindrical coordinate 
system with components e r, e o, ez 
magnitude of the MHD force density in 
the 0-direction 
friction coefficient of energy loss due to 
curvature 
acceleration due to gravity 
height of the electrodes in electrolytic cell 
energy head loss due to friction 
energy head loss due to curvature 
electric current flow 
electric current density vector 
lumped parameter; K = IBo/27rH~ 
K factors in terms of friction and curva- 
ture losses 
geometric shape factor, R/r o 
pressure 
annular Hankel transform parameter 
radius of the outer electrode 
radius of the inner electrode 
radius measured from the centre of the 
electrolytic cell 
velocity in the 0-direction; ~'0 its average 
regression coefficients in Equation 13 
dynamic viscosity of electrolyte 
kinematic viscosity of electrolyte 
density of electrolyte 
function defined in Equation 8a 
surface profile function (Equation 29) 

�9 1976 Chapman and.Hal lLtd .  

1. Introduction 

It is well known in the theory of fluid dynamics 
that some flow systems of cylindrical geometry 
can be successfully analyzed in terms of uni- 
dimensional models [e.g., 1 ,2] .  From a magneto- 
hydrodynamic (MHD) point of view, cylindrical 
cells are particularly inviting systems to study: if 
the electric field is radial and the magnetic field is 
axial, the resulting fluid bulk motion is tangential 
(azimuthal), and if the electrode surface is free, its 
curvature between the electrodes can be estimated 
by unidimensional approximations. The purpose 
of this paper is to present the results of a thorough 
analysis [3] of a cylindrical cell in magneto- 
electrolysis with emphasis on the application of 
the concepts of open channel flow theory to the 
hydrodynamics of the electrolytic cell. 

The celt geometry is shown in Fig. 1 ; if the total 
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Fig. 1. Coordinate system in the cylindrical cell. 
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I is uniformly distributed in the axial (z) direction, 
then the radial current density is obtained from 
the current balance div J = 0 as 

I 
J = e~ 2rrHr" (1) 

If  a magnetic field of  flux density B = e r B  r m ezBz 
is imposed upon the radial electric field, a MHD 
body force is generated, with density 

1Bz 
J x B = -- e e 27rHr (2) 

resulting in a tangential mot ion around the cylin- 
drical annulus. 

Equations 1 and 2 are the fundamental relation- 
ships governing cylindrical cells in magneto- 
electrolysis, when Jo = Jz = Bo = O. 

2. Theoretical 

In a uniform magnetic field (B = -- ezBo) the 
MHD body force acts only in the 0-direction and 
the generated motion is tangential to the elec- 
trodes. If  Vr = Vz = 0 is assumed, from continuity 
considerations the equation of  motion in the steady 
state may be written as follows: 

r-component: p r - Or (3a) 

0-component: r /~r  (rV o +r~ Oz 2 = - - F  o 

(3b) 

0P 
z-component:  Oz - pg" (3c) 

Here, Fo - I B o  _ Kr~ is the MHD body force 
2~Hr r 

density and K is a lumped parameter defined as 

K = IBo - - - .  The boundary conditions r = r o : 
27rHr/ 

Vo = 0 ; r = R :  11o = O ; a n d z = O : V o  = 0, for 
solving Equation 3b, have to be supplemented by 
an additional condition related to the air- 
electrolyte interface. Since the surface velocity 
profile is indeterminate without the prior know- 
ledge of  Vo, a rigorous solution is not feasible. 
One rational approximation is that on the free 
surface the axial derivative of  Vo is a single, 
a priori unknown, r-dependent function: 

aVo 
z = H : ~ z  = F(r).  (4) 

Then, Equation 3b can be solved via the Annular 
Hankel Transformation technique [4] to yield 

zr 2 p2 J 1 (PR) 
Vo(r,z ) = -~ ~ J~(Pro) - -J~(Pg)  BI (pr)Vh 

(s) 
where 

KN(p)  [1 -- cosh (pz)] V h -  p2 

sinh (pz) [ ~t~] 
q p ~ o s ~ _ H ) ~ ( p  ) +KN(P)p sinh (P 

1 
N(P) = P Yl (Pro)[Jo(Pro) - Jo(PR)] 

1 
- -  J l  (pro)[Yo (Pro) - Yo (PR)] 

P 

F(p)  = ~rRo rF(r )Bl (pr )dr  

B 1 (.Dr) = Y1 (Pro)J1 (pr) -- Y1 (Pr)Jt (Pro) (6) 

p are the positive roots of  the equation BI (PR)  = 
0, in an increasing order. One can distinguish be- 
tween the following specific cases: 

(1) The axial variation of  Ve is neglected; the 
solution of Equation 3b is carried out with the 
two 'standard' boundary conditions stated above, 
Vo = 0; r = R and r = ro. Gak [5] treated this 
problem in terms of the classical Euler equation 
and obtained the solution in the form of  

Vo K (A r D r) = r loge (7) 
r 

where 

z loge R/ro A - logeR-~ r~ 
R 2 2 

- -  r O 

2 2 roR loge R/ro 
D -  

R z _ r2o 

An alternative and numerically identical solution 
is obtained from Equation 5 upon proper simplifi- 
cations: 

Krr 2 
V o -  2 ~ ~(p) (8) 

P 

(~(p) = J~(pR)B1 (pr)N(p) 
J~(Pro) - -J~(pR)  " (8a) 
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The appendix contains further details, the first ten 
roots of  Equation 6 and the corresponding numeri- 
cal values of  q~(p). 

(2) The free surface is assumed to be fiat; mo- 
mentum transport  to the air-liquid interface is rela- 
tively small. In this instance 

~Vo 
- F ( r )  = O. ( 9 )  

~z 

Then, F ( p )  is also zero and Equation 5 is simplified 
to 

K~2 r J~(pR) Vo(r,z) 
2 9 S~(Pro) - -S?(pR)  

X B l ( P r ) N ( p ) f ( p , z )  (10) 
where 

f(p,z) = 1 --  cosh (pz) + tanh (pH) sin (pz). 

(11) 

Note that i f f ( p ,  z) = 1, Case (1) is obtained. 
(3) Straight open channel with Owen's bound- 

ary condit ion replacement.  Owen [6] has shown 
that the boundary condit ion in a straight open 
channel can be transformed to that of  a closed 
conduit  of  twice the height of an open channel. 
Thus, one has 

Vo = 0  at r = R a n d r o ;  at z = 0 a n d  z = 2H 

where it follows that Equation 10 is once again the 
solution of  the velocity distr ibution equation, with 

3. Experimental 

The MHD behaviour of  an experimental  cylindrical 

cell with CuSO4/H2SO 4 electrolytes was studied 
[3] in an apparatus described previously [7, 8] .  
The electrodes were 99-9% pure copper. The 
proper roundness of  the electrodes was checked 
after fitting them into circular grooves in the bot- 
tom plate of  the cell and the diameters were found 
to vary within 0.25% of  the average diameter; the 
cylindrical cell was made of  plexiglass with three 
grooves o f  different size to hold the electrodes in 
place. The backsides of  the electrodes (not facing 
each other) were insulated from the electrolyte. 
Two cells were operated in this manner: (a) the 
' inner'  cell with r o = 1.43 cm, R = 5 cm, and (b) 
the 'outer '  cell with r o = 5 cm, R = 10.5 cm; all 
electrodes had a height of  4-45 cm (inner cell) and 
3.81 cm (outer cell). The inner cell was situated 

within the highly homogeneous zone between the 
magnet pole faces, whereas the outer cell occupied 
a zone beyond the pole faces. This arrangement 
allowed operation in a non-uniform magnetic field, 
whose flux density-radius (measured from the 
centre of  the pole faces, i.e., the centre of  the 
cylindrical cells) relationship was correlated via 
regression analysis as 

N 

B(r) = E ~n rn. (13) 
n = l  

f (p ,  z) = 1 --  cosh (pz) 

+ [cosh (2pH) --  cosech (2pH)] sinh (pz). (12) 

I f  the (p/ l )  argument is relatively large, Equations 
11 and 12 become essentially identical. 

The % coefficients were found to depend on the 
magnitude of  the exciting current and are shown in 
Table 1. 

The velocity of  the free surface of  the electro- 
lyte was measured by  observing the time required 

Table 1. Values of the coefficients in Equation 13 for various magnet-exciting current flows (N = 5) 

Magnet- 
exciting Values of  a n 
current 
(A)* n = 1, Tm -1 n = 2, Tm -2 n = 3, Tm -3 n = 4, Tm -4 n = 5, Tm -s /~, T~ 

0 0.363 -- 12.72 215.75 -- 1772-5 5513.9 0.0031 
10 7-070 -- 208.64 3137-10 -- 23929.0 70042.0 0.0814 
20 22.767 -- 884.74 16595.00 --130872.0 408790.0 0.1640 
40 30-371 --1004.30 16595.00 --135847.0 423971.0 0.3067 
60 32.136 -- 752.41 9115.70 -- 59797-0 152270.0 0.4466 
96 61-090 --1910.40 30341.00 --242031.0 736922.0 0.6563 

* Total active range: 0-98 A. 
t See Equation 23 for definition. 
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Fig. 2. Electrolyte surface during magnetoelectrolysis. 
Run 215, inner cell. I = 336.8 mA, B = 0-78 T. 

for a light particle of about 0.5 mm diameter to 
complete, a certain number of revolutions around 
the inner electrode, at a noted radial position. 
'Still' photographs of the surface were taken at 
various cell current densities and magnetic flux 
densities; a typical surface profile is shown in Fig. 2 
for the inner cell. 

4. Results and discussion 

4.1. Velocity profile at surface 

In comparing theory to the experimental findings 
in this work, Figs. 3 and 4 give a preliminary indi- 
cation of the degree of agreement expected. In 
Fig. 3 the velocity versus fractional height distri- 
butions, predicted by Equations 7, 10, 11 and 12, 

are compared, for the radial position �89 + ro). In 
Fig. 4 the radial distribution of Vo on the surface 
is plotted via these equations, together with the 
range of the experimentally observed particle paths 
r = rp. Equation 7 predicts an axially independent 
motion; the other equations predict essentially 
identical profiles but the surface velocity (z /H = 1) 
is 5% smaller than predicted by Equation 7. It is 
important to note, however, that the experimen- 
tally observed values of Vo are 50-90% lower than 
the theoretical predictions, as shown in Fig. 5 for 
two distinct particle paths (2.9 and 3.8 t cm). 
While such a large disagreement is not surprising 
per se (e.g., Gak's experimental data also show 
serious disagreement between Equation 7 and his 
findings [5] ), its existence clearly indicates that 
the hitherto presented theoretical models, no 
matter how mathematically complex they are, 
apply only as a crude approximation. 

We shall now propose a more advanced theory 
and show its good agreement with experimental 
evidence. It is essentially an open-channel hy- 
draulic model: the MHD force density being hori- 
zontal, it is parallel to the bottom of the cell (i.e., 
channel) and flow in the electrolytic cell is con- 
sidered to be analogous to open channel flow with 
the bottom of the channel having a slope 

F o JB Kn 
S - - (14) 
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Fig. 3. The axial distribution of V 0 estimated by Equations 7, 10, 11 and 12, at r = (R + ro)/2. 
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with an average value of Save = [2K71/pg(R + ro)]. 
Experimental evidence indicates that the electro- 
lyte surface is curved. This curvature is caused by 
the presence of a centrifugal force generated by 
the MHD body force. In addition to the frictional 
loss one would expect a loss of fluid energy due to 
the bend [8-11].  If, therefore, this loss can be 
estimated in a rational manner, the surface curva- 
ture and velocity estimates should be less approxi- 
mate in nature than those normally set by restric- 
tive boundary conditions. 

At present, there seem to be only 'rule of 
thumb' approaches to estimating the energy loss 
in fluids due to curvature in open channel laminar 
flow [8, 9]. Shukry [10] recommends for Re > 
10 000 a head loss estimate h e = fe V2/2g where 
fc depends on Re and other parameters. It is usual 
practice to assume a loss of (V02)/2g for a 90 ~ bend 
[ I1] ,  and 1.4 times this value for a 180 ~ bend [12]. 
One would be inclined to take a factor of 2 for a 
360 ~ bend which is the case of a cylindrical cell. 
In a more refined analysis, taking Equation 14 and 
2rrr as the path length for this slope, the available 
liquid head would be h t = 27rKv/g and the friction 
loss and curvature loss would be computed in the 
following manner. 

Assume that the velocity distribution is given by 
the combination of Equations 10 and 11, and since 
the first root of Equation 6 is strongly dominant 
(see Table A1 in Appendix), a single term expan- 
sion is sufficient. Then, 

Vo ~ -~  r - -  - -  r l o g  er 
(15) 

x [1 -- cosh (plz) + tanh (PlH) sinh (plz)] 

where K e is equivalent to the energy needed to 
overcome the friction loss (loss due to curvature 
not included). The average velocity, upon inte- 
gration of Equation 15, can be written as 

Vo "~ K~rof(k) 1 P lH J (16) 

where 

f(k)  (k + 1)(k 3 - 1) -- 6k z loge k 
= 9(k 2 - 1 ) ( k + l )  ; k = R / r  o. 

(17) 

Hence, the energy required to overcome (1) the 
friction loss is 

27rKev v ~'0 P l H  
h e ~ - -  - 2rr-- 

g g ro f ( k )p lH- -  tanh (plH) ' 

(18) 
and (2) the curvature loss is 

he _ 2~Keu _ fe ~-~-. (19) 
g 2g 

fe is to be found experimentally. The total loss in 
energy is 

h w = hf + h e (20) 

and if one sets K = Ks + Ke, Equation 20 can be 
expressed in the more convenient form of 

K P'o P lH ~ v  
2 - 2rof(k ) PIH--  tanh (Pl/ /)  + - . . .  P~(21) 

which is the relationship between the average 
velocity and the MHD body force density. The 
relationship between the surface velocity and aver- 
age yelocity can now be established by computing 
the value of Vo at z = H v i a  Equations i0-12,  and 
the value of ~'0 by appropriate integrals of these 
equations. The result of this computation is the 
simple, but approximate expression 

V0 ~ 0.526 Volz= H (22) 

where V o Iz=H is an estimate of the experimentally 
measured surface velocity, Vex p. The two quan- 
tities are compared in Fig. 5, where the solid curve 
was constructed via Equations 21 and 22, using 
fc = 2. Fig. 5 also contains predictions via Equa- 
tions 7 or 10-11 and as seen, the theory utilizing 
open-channel flow concepts with bend loss taken 
into account yields much better estimates of the 
surface velocity at low and medium magnetic flux 
densities, than otherwise. However, as Re = 500, 
the onset of transition flow in open-channel hy- 
draulics is approached, the discrepancy between 
experimental and predicted surface velocity be- 
comes appreciable. One possible reason for this 
disagreement is the effect of Re on the friction 
parameter re;as shown by Shukry [ 10], fe 
sharply decreases as Re increases from 104 to 
4.104. It is quite possible that the inverse effect o f  
Re o n f  e becomes gradually manifest as the flow 
ceases to be laminar and both average velocity and 
surface velocity become larger for a given value of 
K. In view of the apparent lack of any reliable 
method to estimate the re(Re) relationship in the 
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transition zone for the experimental cell, no 
further analysis of this set of observations has 
been made so far. 

In the inhomogeneous magnetic field, 
IB(r) 

Fo - and B(r) is given by Equation 13. A 
27rHr~r 

rigorous solution of Equation 3b, if possible at all, 
would be rather tedious. If the z-dependence of 
Vo is neglected, the solution, written as 

+ - -  

N OLnrn+l 
Vo _ ~ n(n + 2) 
g l  n= l  

C% (Rn+ 2 _rn+2) r 
R 2 2 ~1 n(n + 2) 

- -  r o - 

z 2 N 
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Fig. 6. Plot of  experimental velocity versus the IB/4~rrd~l 
group, outer cell. 

Fig. 7. Electrolyte surface during magnetoelectrolysis. 
Magnet-exciting current flow = 96 mA. I = 3.282 A, outer 
cell. Note the ripples on the electrolyte surface. 

replaces Equation 9 or Equations 9-11. The de- 
velopment of an open-channel flow relationship 
(i.e., a counterpart of Equation 21) would also be 
rather cumbersome and is beyond the scope of 
this investigation. Some simplification, however, 
can be effected by considering the average, or 
equivalent homogeneous magnetic flux density 
which is computed as 

1 
= -Ae ~ae B(r)dAe (24) 

where A e is the channel surface area;/~ is a func- 
tion, of course, of the magnet-exciting current 
flow, as shown in Table 1. 

Fig. 6 shows the effect of the average MHD 
body force density on the experimentally observed 
surface velocity in a nonhomogeneous magnetic 
field, using the 'outer' cell. In Fig. 7 a photograph 
of the electrolyte surface is shown at a relatively 
large d.c. current flow and the strongest magnetic 
field gradient attained in the experimental appar- 
atus: notice the ripples on the electrolyte surface 
whose growth with a gradual increase in the elec- 
tric field strength ultimately leads to instability 
(electrolyte spills over the electrode). Thus, in a 
nonhomogeneous magnetic field severe turbulence 
can be generated via magnetoelectrolysis. The 
relationship between velocity and the MHD body 
force can be written, 'via open-channel flow theory, 
as 

- = + ( 2 5 )  
2 8Try 

where fp is the turbulent head loss coefficient and 
Dh is the hydraulic diameter. Since velocity 
measurements under fully turbulent conditions 
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could not be carried out with reliable accuracy, no 
attempt has been made to plot Equation 25 on 
Fig. 6. Research into this aspect of the cell hydro- 
dynamics would be an interesting area of study. 

4.2. Estimation o f  the surface profile 

It was shown in the previous section that the elec- 
trolyte surface becomes curved under properly 
chosen conditions of the magnetic/electric field 
coupling. The curvature effect can be estimated in 
the laminar flow regime from the pressure distri- 
bution across the cell, in the following manner. 

From Equations 3a and c, upon integrating the 
total pressure differential, one obtains 

P - P a  = p [ f , ( r , z ) - - f ~ ( R , z ) ] - - p g ( z - - z R )  

(26) 

where Pa is the (reference) atmospheric pressure, 
taken at the outer electrode (r = R) where the 
electrolyte surface height is z R . The f l  function is 
defined as 

]el (r, z) = - -  dr. (27) 
ro r 

The free surface profile is obtained when P = Pa, 
thus at any radial position r, the electrolyte surface 
height is given as 

f~ (R, z~) - f ~  (r, zR) 
z r = z~ (28) 

g 

An estimate of the zr(r ) function may be estab- 
lished if a simple velocity distribution is assumed, 
such as 

V o = K '  l ~  R2 (29) 
r r r o 

where K' is an experimental K-factor; Equation 29 
is a slightly modified version of Equation 7. Thus, 
a z-independent approximation to Equation 27 
may be computed, as in Fig. 8 which shows a 
typical surface profile for the inner cell. Here, the 
quantity 

(zR -zr)g 
- ~ , ( R ) -  ~l(r)  (30) (K ,)5 

was plotted against the fractional cell width. ~1 is 
the integral on [to, r] of the square of the brac- 
keted term in Equation 29, upon division by r. The 
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magnitude of (zR -- zro) is of the order of  a few 
mm according to Equation 30 and Fig. 8, which 
agrees with corresponding experimental observ- 
ations. 

4.3. The effect o f  cell geometry 

The preceding analysis indicates that the cell geo- 
metry has a direct bearing on the MHD behaviour 
of the cell. Indeed, the surface velocity reaches a 
maximum at a radial position ro < rmax < R ,  
whose approximate value is obtained via differen- 
tiation of Equation 7 or 28: 

- - r rn~  rm"x ~- rm~  (31) loge R R 2 2 2 2 

r o R2--r2o r2o R2--r2max 

rma ~ does not depend on the strength of the im- 
posed magnetic field but it strongly depends on 
the aspect ratio k. The value of rmax is 2"89 cm 
for the experimental cell (k = 3-643); if the outer 
electrode radius were doubled, rma x would be 
4"67 cm for R = 10-2 cm and so forth. Moreover, 
the corresponding fractional width values would 
slowly decrease and the relative position of the 
maximum velocity would tend toward the inner 
electrode. 

The effect of the electrode height is also im- 
portant. For a given k, the higher the electrode 
height, the less marked the axial distribution of the 
electrolyte velocity, and the more accurate t he  
unidimensional r-dependent flow model. Converse- 
ly, if the electrodes are short, bottom and edge ef- 
fects become relatively important and the forego- 
ing analysis would not apply. 

5. Concluding remarks 

This study has shown that the MHD flow in a mag- 
netoelectrolytic cell can be successfully analysed 
by means of open-channel flow hydraulics and the 
surface velocity can be predicted at a reasonably 
good accuracy in the laminar reg'lme by accounting 
for (1) the friction loss of  fluid energy at the cell 
walls and (2) the energy loss due to curvature. The 
understanding of the pertinent MHD behaviour 
permits the design of magneto-electrolytic cells 
with desired flow characteristics. 
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Appendix 

1. Summary of the annular l-lankel transform 
(AHT) technique 

This approach of operational calculus has been dis- 
cussed by Sneddon [13] and summarized by 
Tranter [4]. The transform is especially useful in 
treating the differential operator 

L(r) = 1 3 {rOVt  
r-~r \ Jr]  

of fluid dynamics in cylindrical and spherical co- 
ordinate systems. The AHT of a function f(r) is 
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definedas 

f ( p )  -~ f ~ r f ( r ) B n ( P r ) d r ;  R > ro (A1) 

where 

B.(pr)  = J . (pr ) r . fpro)  - Y . fpr)J . (pro) .  

(A2) 

J and Y are Bessel functions of the first kind of 
order n, and p are the positive roots in an increas- 
ing order (k = 1, 2 , . . . )  of the equation 

J n ( P R ) Y n ( P r o )  = Y n ( P R ) J n ( P r o ) .  (A3) 

The inversion formula is given by 

.~ p:J~.(pn ) . . . . . .  
f (0  = T s. fp (pn)  ~ 

(A4) 

If, therefore, Equation 3b is subjected to annular 
Hankel transformation, the ordinary differential 
equation 

d: Vfp, z) 
dz 2 p2 V(p, z) = -- KN(p) (A5) 

is obtained, where 

N(.p ) = f nJB l (pr)dr ; 

the integrated form is given below Equation 5 in 
the text. The solution of Equation A5 consists of 
the homogeneous part Clcosh(pz) + C2s inh(pz ) ,  

and of the particular integral K N ( p ) / p  2 . Applying 
the set boundary conditions, the unknown 

constants C1 and C2 may be determined and 
solutions pertaining to various physical conditions c 
can be obtained. 

2. The roots of Equation 6 and the ~b(p) function 

Equation 6 is a special case of  Equation A2, when 
n =  1 and r = R .  T h e  roo t s  p k  ; k = 1,2 ,3  . . . . .  
may be obtained by using extensive Bessel func- 
tion tables [14, 15], or more invitingly for fast 
electronic computation, by the method of Fettis 
and Caslin [16], combined with a standard 
Newton-Raphson root-finding technique. Table 
A1 contains the numerical values ofpk and the 
corresponding numerical values of r in 
Equation 8 for the first ten indices, computed via 
the Fettis-Caslin procedure. 

Table A1. The first ten roots o f  Equation A 2  for n = 1, 
r = R o and the corresponding r functions. 
r o = 1.4cm; R = 5.1 cm 

k Pk 104.c~(Pk] 
(em -1 ) (era)) 

1 0-930 95 1003-430 
2 1.726 90 -- 4.801 
3 2.566 99 -- 44.112 
4 3.414 27 1-577 
5 4.257 63 9-429 
6 5.10476 -- 0.703 
7 5.952 43 -- 3.266 
8 6.800 45 0.389 
9 7.648 71 1.424 

10 8.497 13 -- 0.245 


